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abstract

The Existence of a Discontinuous Homomorphism Requires a Strong Axiom of Choice

Michael Andersen
Department of Mathematics, BYU

Master of Science

Conner and Spencer used ultrafilters to construct homomorphisms between fundamental
groups that could not be induced by continuous functions between the underlying spaces. We
use methods from Shelah and Pawlikowski to prove that Conner and Spencer could not have
constructed these homomorphisms with a weak version of the Axiom of Choice. This led us
to define and examine a class of pathological objects that cannot be constructed without a
strong version of the Axiom of Choice, which we call the class of inscrutable objects. Objects
that do not need a strong version of the Axiom of Choice are scrutable. We show that the
scrutable homomorphisms from the fundamental group of a Peano continuum are exactly
the homomorphisms induced by a continuous function.

We suspect that any proposed theorem whose proof does not use a strong Axiom of
Choice cannot have an inscrutable counterexample.

Keywords: inscrutable, inscrutability, scrutable, scrutability, axiom of choice, discontinuous,
locally trivial, non-locally trivial, kernel invariance, shelah, pawlikowski, countable choice,
choice, arbitrary choice, dependent choice, discontinuity
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Chapter 1. Introduction

Conner and Spencer use ultrafilters to construct non-trivial homomorphisms from the Hawai-

ian earring group to G, a finite group, such that every group element corresponding to a

simple closed curve is mapped trivially. It is not difficult to see that such maps cannot be

induced by continuous maps of the underlying spaces.

We use methods by Shelah and Pawlikowski to show that every homomorphism from the

fundamental group of a Peano continuum to a countable group which can be constructed

using the Axiom of Dependent Choice is induced by a continuous map of the underlying

spaces.

This inspired us to define a class of inscrutable objects, those that can not be constructed

using only the axiom of Dependent Choice. Our theorem can then be restated that the

homomorphisms from the fundamental group of a Peano continuum to a countable group

that can not be induced by a continuous function of the underlying spaces are exactly the

inscrutable homomorphisms between those groups.

1
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Chapter 2. Definitions

Definition 2.1 (Loop based at x). A loop based at x is a continuous function f : I → X

such that f(0) = f(1) = x.

Definition 2.2 (Freely homotopic). Let X and Y be a topological spaces and f, g : X → Y

be continuous functions. f and g are freely homotopic if there exists a continuous function

φ : [0, 1]×X → Y such that φ |0×X= f and φ |1×X= g. φ is called a free homotopy.

Furthermore, if f and g are loops based at x and φ |I×0,1 is constant, we say that f and

g are homotopic. Homotopy is an equivalence relation and is denoted [α].

Definition 2.3 (Fundamental group of a space X at x). The fundamental group of a space X

at x, denoted π1(X, x), is a group whose underlying set is the set of homotopy classes of loops

of X based at x, and whose binary operation is [α][β] = [α ∗ β], where ∗ is concatenation.

It is easy to check that the set of homotopy equivalence classes of X with this operation is

a group.

Due to the underlying set of π1(X, x) being a set of classes of loops based at x we will

only consider topological spaces that are path connected.

Lemma 1. The fundamental group of a space X does not depend on the choice of x, up to

isomorphism.

Proof. Let x0, x1 ∈ X and P be a path from x1 to x0. There exists an isomorphism, called

the P induced isomorphism, iP : π1(X, x0)→ π1(X, x1), given by iP ([α]) = [P ∗α ∗P−1]. So

π1(X) does not depend on the choice of basepoint.

We note that there is no cannonical isomorphism between π1(X, x0) and π1(X, x1), as

distinct choices of P may give distinct isomorphisms.

We say that φ : π1(X, x0)→ G induces φ′ : π1(X, x1)→ G if for some path P, φ = φ′ ◦ iP .

We note that if φ induces φ′, then φ′ induces φ by φ′ = φ′ ◦ (iP ◦ iP−1) = φ ◦ iP−1 .

2
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Figure 2.1: Conjugation by a path P

α PαP−1

1

Definition 2.4 (Trivial free homotopy class relative to φ). Let H be a free homotopy class

of loops of X. H is trivial relative to φ : π1(X, x)→ G if there exists a loop β ∈ H based at

x such that [β] ∈ ker(φ). We denote this property by H ∈ kerφ.

Lemma 2. A trivial free homotopy class relative to φ : π1(X, x0) → G is trivial relative to

φ′ : π1(X, x1)→ G, if φ′ is induced by φ.

Proof. Let H ∈ ker(φ : π1(X, x0) → G). There exists α ∈ H such that [α] ∈ kerφ. Let P

be a path such that φ = φ′ ◦ iP . Then PαP−1 ∈ H and φ′([PαP−1]) = φ′(iP ([α])) = φ([α]),

which is trivial. So H ∈ kerφ′

Lemmas 1 and 2 allow us to omit referencing the basepoint of the fundamental group

of X because the kernel of a homomorphism is invariant. We will use π1(X) to denote the

fundamental group and not mention a basepoint.

Definition 2.5 (A sequence of loops converging to p). A sequence of loops {αi} converges

to p if for every open set U containing p there exists N such that αi ⊂ U for all i > N .

For locally path connected spaces, there exists a path in U for each i > N connecting p

to the basepoint of αi.

3
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Lemma 3. Let Zi be compact, gi : Zi → X be continuous functions, x ∈ X, pi = g−1i (x), and

W be the one point compactification of
⊔

(Zi \ {pi}). Then
⊔
gi : W → X is a continuous

function if the basepoint of W is mapped to gi(pi).

Proof. Let U ⊂ X be an open set. The inverse image of U under each gi is open in its

respective Zi. A set containing the basepoint of W is open in W if and only if it is the union

over all i of non-empty open sets Vi such that pi ∈ Vi ⊂ Zi, so
⊔
g−1i (U) is open in W if

x ∈ U . A set not containing the basepoint is open if and only if it is a union of open sets

Vi ⊂ Zi, so
⊔
g−1i (U) is open in W if x /∈ U .

Definition 2.6 (Hawaiian earring). The Hawaiian earring, denoted HE, is the one point

compactification of a sequence of copies of S1 \ {p}. The point of compactification is called

the basepoint of the Hawaiian earring. We use ci to represent the ith copy of S1 in the

sequence. The homotopy class of ci is denoted li = [ci]. We will let fi denote some fixed

parameterization of ci. The fundamental group of the Hawaian earring is called the Hawaiian

earring group, and we denote it HEG.

Definition 2.7 (Cantor set). We use C = {0, 1}N endowed with the product topology as

our model of the Cantor set. Every element of the Cantor set is represented by a sequence

of 1’s and 0’s, and the ith term of the representation is called the ith letter of that element.

We use ei to represent the element of the Cantor set that has a 1 in the ith position and 0’s

elsewhere. The parity of the ith letter is the choice of 0 or 1.

Definition 2.8 (Polish space). A Polish space is a metric space that is complete and sepa-

rable.

Definition 2.9 (Hausdorff space). A Hausdorff space is a topological space X such that

every pair of points x, y ∈ X implies the existence of disjoint open sets U and V such that

x ∈ U and y ∈ V .

4



www.manaraa.com

Definition 2.10 (Continuum). A continuum is a non-empty, compact, connected, metric

space. A Peano continuum is a locally connected continuum. It is known that Peano continua

are locally path connected.

Definition 2.11 (ZF). We use ZF to denote the Zermelo-Fraenkel axioms of set theory.

Definition 2.12 (Axiom of Dependent Choice). The Axiom of Dependent Choice, denoted

DC, states: For any nonempty set X and any entire binary relation ∼ on X, there is a

sequence (xn) in X such that xn ∼ xn+1 for each n ∈ N.

5
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Chapter 3. Baire Spaces and the Property of Baire

Definition 3.1 (Baire space). A topological space X is a Baire space if int(∪An) is empty

for every countable collection {An} of closed sets with empty interiors.

The following is the Baire category theorem, as stated in Munkres [3, Thm 48.2, P. 296].

Theorem 3.2. If X is either a compact Hausdorff space or a complete metric space, then

X is a Baire space.

Definition 3.3 (Nowhere dense in X). A set A ⊂ X is nowhere dense in X if every non-

empty open set intersecting A contains a non-empty open set that does not intersect A. We

will omit X if the ambient space is obvious.

Definition 3.4 (Meager set in X). A set of X is meager in X if it is the countable union

of sets that are nowhere dense in X. We will omit X if the ambient space is obvious.

Lemma 4. Let X be a topological space

(i) The countable union of meager sets of is a meager set.

(ii) A nowhere dense set has empty interior.

(iii) A closed set with empty interior is nowhere dense.

(iv) The closure of a nowhere dense set is nowhere dense.

(v) Countable subsets of Hausdorff spaces are meager.

(vi) The subset of a meager set is meager.

(vii) If f : X → Y is a quotient map and M ⊂ Y is a nowhere dense set, then f−1(M) is a

nowhere dense set.

(viii) If f : X → Y is a quotient map and M ⊂ Y is a meager set, then f−1(M) is a meager

set.

6
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Proof. (i) The countable union of a countable union of nowhere dense sets is the countable

union of nowhere dense sets.

(ii) Let A be nowhere dense. Every non-empty open subset of int(A) is a subset of A, and

every open set that intersects A contains a non-empty open set that does not intersect

A. So there cannot be a non-empty open subset of int(A).

(iii) Let A be closed in X and have empty interior as a set of X. Since no point of A is in

the interior of A, every open set U containing a point of A contains a point not in A,

call it p. The complement of A is open, so there exists an open subset of U containing

p that does not intersect A.

(iv) Let A be a nowhere dense set and let A be the closure of A. Since A has empty

interior, every point of A is either an element of the boundary of A or is a limit point

of the boundary of A, so every open set containing a point of A contains a point of the

complement of A, therefore A has empty interior implying that A is nowhere dense.

(v) If X is a Hausdorff space then singleton set of X is a closed set with empty interior,

so every countable union of points of X is a meager set.

(vi) It is obvious that a subset of a nowhere dense set is nowhere dense, and that the subset

of a meager set is a countable union of subsets of nowhere dense sets.

(vii) If A is an open set of X, then f(A) is an open set of Y , so f(A) contains an open

set B that does not intersect M , so A ∩ f−1(B) is an open subset of A that does not

intersect f−1(M). So f−1(M) is nowhere dense.

(viii) If A ⊂ Y is a meager set, it is the countable union of nowhere dense sets. Each of these

nowhere dense sets has a nowhere dense pre-image under f , so f−1(A) is the countable

union of nowhere dense sets.

7
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Lemma 5. A non-empty Baire space is not meager in itself.

Proof. Let X be a Baire space. Suppose that {An} is a countable collection of nowhere

dense sets such that ∪An = X. For each n, An is a nowhere dense set, so An is a closed set

with empty interior (lemma 4), so int(X) = int
(
∪ An

)
= ∅, contradicting int(X) = X.

Definition 3.5 (Symmetric difference). The symmetric difference is a binary operation on

the subsets of a space, and is denoted 4. If A,B ⊂ X, then A4B = (A \B) ∪ (B \ A).

Lemma 6. Let f : X → Y be a quotient map, U,M ⊂ Y , and let

B =
(
f−1(U)4f−1(M)

)
\ f−1(U4M),

then

(i) f−1(U4M) ⊂ f−1(U)4f−1(M)

(ii) B ⊂ f−1(M)

(iii) f−1(U4M) = f−1(U)4
(
f−1(M) \B

)
Proof. (i) If x ∈ f−1(U4M), then f(x) ∈ U or f(x) ∈M but not both, so x ∈ f−1(U) or

f−1(M) but not both, so x ∈ f−1(U)4f−1(M).

We notice that the reverse containment does not necessarily hold. If x ∈ U \ M

and y ∈ M \ U map to the same point of Y , then x, y ∈ f−1(U)4f−1(M), but

x, y /∈ f−1(U4M).

(ii) If x ∈ B, either f(x) ∈ U or f(x) ∈ M . If f(x) /∈ U ∩M , then f(x) ∈ U4M , so

x ∈ f−1(U4M), so f(x) ∈ U ∩M , which is a contradiction, so x ∈ f−1(M).

(iii) B is a subset of f−1(M) and of f−1(U) by (ii), so deleting B from M would include

B in the symmetric difference of the resulting sets.

8
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Definition 3.6 (Property of Baire). A subset A of a topological space has the property of

Baire if A = U4M , for some open set U and some meager set M .

Lemma 7. If f : X → Y is a quotient map and A ⊂ Y has the property of Baire, then

f−1(A) has the property of Baire.

Proof. Let U be open and M be meager such that A = U4M . Let B be as in lemma 6. By

lemma 4, f−1(M) is meager, so f−1(M) \B is meager, so

f−1(U4M) = f−1(U)4
(
f−1(M) \B

)
has the property of Baire.

9
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Chapter 4. Locally Trivial Spaces

Definition 4.1 (Locally trivial relative to φ). Let X be a topological space and φ : π1(X)→

G be a homomorphism. X is locally trivial relative to φ if for every point p ∈ X there exists

a neighborhood U containing p such that the free homotopy class of every loop α ⊂ U is

in kerφ. We will denote “X is locally trivial relative to φ” by “X is locally trivial (rel φ)”.

Note that the choice of basepoint does not matter, because kerφ is a normal subgroup of

π1(X).

Definition 4.2 (Two set simple cover relative to φ). A two set simple cover (rel φ) is a cover

of a topological space X such that for all [γ] ∈ π1(X) such that whenever γ is contained in

the union of two elements of the cover, [γ] ∈ ker(φ). Note that this is well defined, since

ker(φ) is independent of basepoint in X. We will denote “C is a two set simple cover relative

to φ” by “C is a two set simple cover rel(φ)”.

Lemma 8. Let X be a topological space and Y a locally simply connected space. If f : X → Y

is continuous then X is locally trivial (rel f∗)

Proof. Let X be a topological space, Y a locally simply connected space, and f : X → Y be

continuous. Let U be a simply connected open set about f(p). Then any loop based at p

and contained in f−1(U) lies in ker f∗. So X is locally trivial (rel f∗).

Lemma 9. Let X be a Peano continuum and Y an aspherical simplicial complex. If

φ : π1(X) → π1(Y ) has the property that X is locally trivial (rel φ) then there exists a

continuous function f : X → Y such that f induces φ.

Proof. Let X be a Peano continuum, Y be an aspherical simplicial complex, and φ : π1(X)→

π1(Y ) have the property that X is locally trivial (rel φ). Since X is locally trivial (rel φ)

we may cover X with open sets that are trivial with respect to φ. Let l be the Lesbesgue

number of this cover. Cover X by balls of radius l/3, Since X is locally path connected,

components of elements of this cover are path connected. There exists a finite subcover of

10
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Figure 4.1: Commutative Diagram for Lemma 9

ψ

N(C)
α

X
f

Y

π1
π1

π1

ψ∗
π1(N(C)) σ = α∗

π1(X) φ π1(Y )

1

this cover, call it C. Since the union of intersecting elements of C has radius at most 2l/3,

C is two set simple (rel φ). Let N(C) denote the nerve of C.

By [3] there exist homomorphisms ψ∗ : π1(X) → π1(N(C)) and σ : π1(N(C)) → π1(Y )

such that φ = σ ◦ ψ∗, and ψ∗ is induced by a continuous function ψ : X → N(C). This

reduces the problem of finding a continuous function f : X → Y that induces φ to finding a

function h : N(C)→ Y that induces σ.

Since N(C) is a simplicial complex and Y is an aspherical simplicial complex, there exists

α : N(C)→ Y such that α∗ = σ. f = α ◦ ψ induces σ ◦ ψ∗ = φ and the lemma is proved.

11
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Lemma 10. Let X be a first countable space and φ : π1(X)→ G. X is locally trivial (rel φ)

if and only if for every continuous function g : HE→ X, φ([g(ci)]) is trivial for some i.

Proof. (⇒) Suppose there exists a continuous function g : HE→ X such that φ([g(ci)]) is

non-trivial for all i. By continuity, g(ci) converges to a point, so every open set containing

the point of convergence contains a loop mapped non-trivially by φ.

(⇐) Let X be first countable and not locally trivial (rel φ). There exists p ∈ X such

that every neighborhood of p contains a loop α such that φ([α]) is not trivial. X is first

countable, so there exists a sequence of nested open sets {Ui} whose intersection is {p}. For

each Ui choose a loop αi ⊂ Ui based at p such that φ([αi]) is not trivial. We now have a

sequence of loops based at p, such that no loop of the sequence is mapped trivially.

We construct g : HE→ X by mapping ci of HE to αi, with the basepoint of HE being

mapped to p ∈ X. This gives a continuous function from HE to X such that φ(g(ci)) =

φ(αi) 6= 1 for all i.

12
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Chapter 5. Inscrutable Homomorphisms

Definition 5.1 (The Shelah function). We define the Shelah function h : C → HEG by

a 7→ [α].

Where α is the loop given by

α(x) =

 fi
(
2i(x− 1 + 1

2i
)
)

x ∈
[
1− 1

2

i
, 1− 1

2

i+1]
and ai = 1

x0 x ∈
[
1− 1

2

i
, 1− 1

2

i+1]
and ai = 0.

Recall that fi is a parameterization of ci.

Definition 5.2 (The induced relation of φ). Let φ : HEG→ G be a homomorphism. The

induced relation of φ, denoted ∼φ, is given by a ∼φ b ⇔ φ(h(a)) = φ(h(b)), where a and b

are elements of C. Note that a ∼φ b⇔ (h(a))[h(b)]−1 ∈ ker(φ).

Definition 5.3 (Property of Shelah). An equivalence relation ∼ on C has the property of

Shelah if for every pair a, b ∈ C,
∣∣{i|ai 6= bi}

∣∣ = 1⇒ a � b.

Lemma 11. If φ : HEG→ G maps all li’s non-trivially then the induced relation of φ has

the property of Shelah.

Proof. Suppose that a, b ∈ C such that {i | ai 6= bi} = {j} With no loss of generality

h(a) = uljv and h(b) = uv. Then

φ
(
h(a)(h(b))−1

)
= φ

(
(uljv)(v−1u−1)

)
= φ(ulju

−1) = φ(u)φ(lj)
(
φ(u)

)−1
which is conjugate to a non-trivial element. So a � b.

13
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Lemma 12. [4, p. 3086 Lemma 4] A relation on the Cantor set with the property of Shelah

and the property of Baire is meager.

Pawlikowski does not use a version of the Axiom of Choice stronger than the Countable

Axiom of Choice in the proof of this lemma.

Lemma 13. If φ : HEG→ G maps all li’s non-trivially, then the induced relation of φ does

not have the property of Baire.

Proof. Assume φ : HEG→ G maps all li’s non-trivially and ∼φ has the property of Baire.

By lemma 11 it also has the property of Shelah, so ∼φ is a meager set in C × C by lemma

12.

If [a] is the equivalence class of a ∈ C under ∼φ, then [a] × [a] ⊂∼φ must be meager

in C × C, so [a] is meager in C by the Kuratowski-Ulam theorem [6, Thm 3.5.16, P. 112].

The union of the equivalence classes of ∼φ is C, so C is the countable union of meager sets,

which implies that C is meager by lemma 4, which contradicts lemma 5.

Definition 5.4 (Inscrutable property). A property P is inscrutable if

ZFC implies the existence of an object with property P

and

ZF + DC + “P is false” is equiconsistent with ZFC.

Definition 5.5 (Continuity). A homomorphism φ from the fundamental group of a Peano

continuum to a countable group is continuous if there exists a function f from a Peano

continuum to an aspherical symplicial complex such that f∗ = φ. A homomorphism φ

from the fundamental group of a Peano continuum to a countable group is discontinuous

otherwise.

14
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Theorem 5.6. ZF + DC + “no homomorphism is discontinuous” is equiconsistent with

ZFC.

Proof. (⇒) Assume that ZF + DC + “no homomorphism is discontinuous” is consistent.

Gödel [2, P. 53] showed that the consistency of ZF implies the consistency of ZFC.

(⇐) Let X be a Peano continuum and assume that ZFC is consistent. Shelah showed

that ZF + DC + “Every subset of R has the Baire property” is consistent is implied by the

consistency of ZFC [5, p. 43].

Suppose φ : π1(X) → G is a discontinuous homomorphism from the fundamental group

of a Peano continuum to a countable group. Lemma 9 implies that X is not locally trivial

(rel φ) and Lemma 10 implies that there exists a continuous g : HE→ X such that φ([g(ci)])

is nontrivial for all i.

Lemma 13 implies that ∼φ◦g∗ is a subset of C × C that does not have the property of

Baire. Since C × C is homeomorphic to C, and R is a quotient of C, lemma 7 implies we

have constructed a subset of R that does not have the property of Baire.

This implies that the existence of a discontinuous homomorphism contradicts ZF + DC

+ “Every subset of R has the property of Baire.” So ZF + DC + “no homomorphism is

discontinuous” is consistent.

Theorem 5.7. Discontinuity is an inscrutable property.

Proof. Conner and Spencer [1, p. 225] use ZFC to construct a homomorphism g from HEG

to a finite group such that g cannot be induced by a homomorphism of the underlying

spaces. So ZF + DC + “No homomorphism is discontinuous ” is equiconsistent with ZFC,

by Theorem 5.6.

15
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